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ABSTRACT

This study investigates the effects of different charge density rise times upon the
magn:tude of the Cerenkov radiation produced by a semi-infinite electron beam. The
magnetic field pulses were generated for different rise times and relationships between
the maximum magnitudes and their associated rise times were obtained. These were
compzred with theoretical relationships derived from a power series approximation. The
generated results were close to those predicted by theory for short rise times at short
radiai distances. For longer rise times, the departure from theory was caused by the
magnitude of the decay portion of the magnetic pulse. This uffect could be mitigated at
longer risz times by increasing the radial distance from the electron beam.
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I. INTRODUCTION

A. BACKGROUND

Cerenkov radiation is the electromagnetic emission caused by the passage through
a dielectric medium of a charged particle that is traveling faster than the speed of light
in that dielectric medium. |

Imagine an electron moving through a dielectric medium relatively slowly. The
electric field of the moving electron tends to repulse the electrons of nearby atoms while
atrracting the nuclei, creating distortions in the atoms which results in the creation of
temporary dipoles. Thus, the medium around the electron becomes polarized. Because
the polarization field around the electron is completely symmetric, there is no resultant
field at large distances. [Ref. 1: pp. 3-4]

But if the electron is moving faster than the speed of light in the dielectric medium,
the polarization field is no longer completely symmetrical. While the azimuthal plane
symmetry is preserved, there is a resultant dipole field along the axis of travel which is
apparent at large distances. This ficld is created at cach path element along the electron’s
track. Each field radiates a brief electromagnetic pulse before the atoms realign them-
sclves and return to their normal shape. {Ref. 1: p. 4] This behavior can be secn in Fig-
ure [.

The time development of Cerenkov radiation was introduced by Buskirk and
Neighbours for application to electron beams. Single charged particles produce a radi-
ated power that is proportional to the frequency. Electrons in an accelerator bunch ra-
diate coherently, an eflect that more than offscts a single particle increase in radiated
power with frequency. [Ref. 2: p. 3750]

This time structure effect is not observable with present technolegy in S or L band
linear accelerators due to their relatively high fundamental frequency. Induction accel-
erators should produce observable results in air for energies greater than 25 MeV due
to their longer electron bunch structure. [Ref. 2: p. 3753]

Lyman conducted a preliminary study investigating the magnetic field radiated from
a passing charge bunch traveling over a finite path. She showed that the magnetic field
magnitude versus time plots depended not only on the observer’s position but on the

specific time conditions of each case. {Ref. 3: p. 3]
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Figure 1. A Charged Particle Moving Through a Dielectric Medium: (a) slow
speed (b) fast speed [Rcl. 1: p. 4]

Price expanded on Lyman’s study by investigating how the magnitude and shape of
the radiated field depended on the obscrver location relative to the time boundarics de-

fined by relationships between the arrival times of different parts of a pulse. [Ref. 4: p.
3]

B. OBJECTIVILS

One of the key assumptions in the Cercnkov radiation time development is that the
current pulse has a ramp-front, i.e. that the electron pulse density incrcases from zero
to a maximum constant value in a linear {ashion. The end of the pulse is assumed to be
a mirror image of the ramp-front but the effects of the pulse end havz not been consid-
ered in these studies.

The primary objective of this work is to investigate the effects of varying the rise
time of the electron density, i.e. varying the slope of the ramp-front, upon the magnitude
of the Cerenkov pulse.

Sccondary considerations are to compate the shape and magnitude of Cerenkov

pulses along lines parallel to the axis of electron beam travel, evaluate the maximum




Cerenkov magnitude as a function of radial distance from the axis of electron beam
travel, and plot the magnetic field as a function of time and radial distance.




II. THEORY

A. RADIATION FIELDS

To calculate the Cerenkov magnetic and electric fields, onc must first determine the
potentials from the moving charge distribution. The relationship between the fields and
potentials are given by Equations 2.1 and 2.2 {Ref. 2: p. 3750], which are

B=VxA, @.1)
R v S /. S
=— Vo -, (2.2)

The speed of light in free space is ¢, while the speed of light in the medium is ¢. The
electron pulse is assumed to move with velocity v in the positive z direction. The charge
density p, is assumed to be concentrated along the z axis while the charge is assumed to
move with no change in shape [Ref. 2: p.3750] such that

pulr) = p(z,)5(x)5(), (2.3)
plz.t) = pofz = v1). (2.4)

The charge density p, has units of charge per volume while p and p, have units of
charge per lenght.

Using the assumption of Equation 2.3 and applying it to the usual retarded solutions
of the wave equations, one obtains the potentiais [Refl. 2: p. 3750}

O(r,) = —l— J -;1,7 p(r’ 1)z’ (2.5)
—— v _1_ ! o7 ?
Alry) = | 5 o' ,1)dz'. (2.6)

Note that ¢ is the permittivity of the medium. Also, ¢ is the retarded time and

R =r 1" such that




I'=t._._l-l;:c.—[_l-_ (2.7)

The assumption of Equation 2.4 can now be inserted into the potential and a new
variable u(z') = z' — vt' can be introduced [Ref. 2: p. 3750] so that

O(r) =+ f —1‘{- oo ()2, (2.8)

Alr) = f 7’(;' p o)z, (2.9)

The new variable u(z') can be written out explicitly where x, y, and z represent the
coordinates of an observer or observation point and 2’ is the coordinate of the front edge
of the electron pulse such that

o{x? + 2 + (2 — z')’};_
u)=z2—-ovt+ Z . (2.10)

The velocity v is in the positive z direction and A is proportional to v. Therfore since
A has a component only in the z direction, B only has components in the x and y di-
rections and can be calculated from Lquation 2.1 [Ref. 2: p. 3751] such that

o e el v |1 & r

Bx— ¢ Jay [ R ]d" + ¢, JR éy [po(u)]dén (2“)
__ofelpm , o {1 8 .

By=- J‘é‘x [ R ]dc c, J R 7 Low))dz'. (2.12)

The first integrals in Equations 2.11 and 2.12 have a falloff of R-? at large distances
for radiation and will be ignored. Implementing the u dependence on x and y (Equation
2.10 where du/dy = y[R and ¢u/0x = x[R) into these equations gives Equations 2.13 and
2.14 [Ref. 2: p. 3751] in the form




2
J_ '
Be= o J—F Py (W), (2.13)

2
By=-2 J oo (214)

Note that the new term p,'(u) in Equations 2.13 and 2.14 is the derivative of p,(u)
with respect to the function u, which was defined earlier. Equations 2.14 and 2.15 can
be combined into one equation. Also a new function s can be defined as s = (x> + y’)lz'
[Ref. 2: p. 3751} such that

2
B= 7”5; J -I-;-; p(w)dz'. (2.15)

B. TIME DEVELOPMENT

To evaluate Equation 2.15, one must consider the dependence of u upon z’ as given
in Equation 2.10. If Equation 2.10 is plotted in the u-z' plane, the first two terms are a
straight line with unit slope and an intcrcept that changes with time. The third term is
a hyperbola which opens in the + u direction with asymptotic slopes of +v/c. In the
Cerenkov case where v > ¢, the curve is as shown in Figure 2. The curve translates
downward to smaller values of u as time increases. This is due to the time term in
Equation 2.10. [Ref. 2: p, 3751]

Certain assumptions about the charge shape and configuration must now be taken
into account. The charge is assumed to move with no change in shape. This was reflected
in Equation 2.4: p(z,t) = p,(z — vt). Since p and p, are also functions of u, p(u) = p,(u).
The charge densityv is assumed to have a ramp-front profile, i.e. the density increases
from zero to a maximum constant value in a linear fashion. The time that it takes for
the charge density to reach this constant plateau is called the rise time {Ref. 4: p. 13].

Only changing currents (those with a nonzero p,) will contribute to the magnetic
fields of Equation 2.15. If the charge density has a linear rise to a constant value, then
the derivative p,’(u) will be a constant valued square pulse of magnitude p,, as shown in
Figure 3. [Ref. 2: p. 3751]




Figure 2. The Function s(z’) ),

At large negative times, the #(z') curve ¢, (Equation 2.10) is completely above the
nonzero portion of the p,’(u) curve so that the contribution from p,’(u) is zero and thus
the magnetic field is zero. The u(z') curve moves downward as time increases until the
B pulse begins when u(z') is tangent (curve ¢, ) to the upper portion of the of the p,'(v)
pulse. The magnitude of the magnctic ficld increases as u(z') moves downward with in-
creasing time until the u(z’) curve becomes tangent (curve 1,) with the lower edge of the
p, (1) pulse. The nonzero part of Equation 2.15 has its largest extent at this time--from
u(z,) to u(z;). At later times, Equation 2.15 breaks into two regions of the 2’ axis and the
B pulse decreases with increasing time because the extent of the integral in the two re-
gions decreases as a result of the upward turn of the u(z’) curve. {Ref. 2: p. 3751}

If the derivative p,’(1) = p,’ = constant, then it can be taken outside the integral of

Equation 2.15. Also the values of n = ¢,/c and f = v/c, can be inserted so that

B = nf’p,, f _sz— d'. (2.16)
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Figure 3. The Functions p,(«) and p,’(«) over the Pulse Lenght

The relationship of the charge density p to the function u (Figure 4) must be deter-
mined in order to evaluate p,’. This relationship is

p
p=—=Tu+tp, (2.17)

Note that Au = u, — u, (sce Figure 1).

Taking the derivative of Equation 2.17 with respect to u, one obtains p,' such that

' ' P
Po'(U) = ppy' =~ A; J (2.18)

Equation 2.18 is now substituted into Equation 2.16 to give

P '
B=-n/3’—A-§-J-I—:7dz. (2.19)
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Figure 4. p as a Function of # at One End of the Pulse

Since R?=s?+ (z — 2')? and Au =va where a is the rise titne, Equation 2.19 can be
integrated over the limits of z, to z, Introducing the function w =z — 2’ and intcgrating

gives the result N

B =—nf? 52 { tan™'¢ =Ly tan™/( = )} (2.20)

Note that w, =z ~z' and w, =z — z/. Thus, the problem is to find the values of w, and
wy. [Ref. 3: p. 14)

C. LIMITS OF INTEGRATION

To find the limits of integration z' and z/ , one must consider two cases. The first
case is where the u(z') curve minimum is in the non-zero portion of the p,'(x) function,
i.e. between curves #, and £, of Figure 2. The second case is where the u(z') curve mini-
mum has passed through the non-zero portion of the p,’'(v) function, i.e. lower than the

curve 4, of Figure 2.




The first case produces a single integral where the limits of integration are found by
solving Equation 2.10 for z'. The function u(z') = u, where y, is the value of the u curve
minimum at the upper edge of the p,’(«) function. The result is

R E R R R )
(1= 4% '

2 (2.21)
Note that 4, =y, + vt.

The second case produces two integrals where the limits of integration are also
found by solving Equation 2.10 for z’. Two of the limits come from Equation 2.21 while
the other two come from where the function u(z') = u,. U, is the value of the u curve
minimum at the lower edge of the p,’(x) function. The result is Equation 2.21 and

{4y~ B2} £ BH{(z = 4% + 551 - B2))
(=42 '

22' =

(2.22)

Note that 4, =u, + vt.

Another way ta describe the limits is that they are the 2z’ values of the intercepts of
the u(z') curve with the upper and lower edges of the non-zero part of the p,'(u) function.
This is shown in Figure §.

For the two integrals of the second case, the ordering of the limits is very important.
The lower and upper limits of the first integral are z,’( min) and z,’( min) respectively
while the lower and upper limits of the sccond integral are z,’( max) and z,'( max) re-
spectively.

D. RISE TIME DEPENDENCE

To derive an approximation for the maximum magnetic ficld dependence upon rise
time, Equation 2.10 must be developed in a power series. Denoting z,’ as the value of
z' at which Equation 2.10 has zero slope, the values of z,’, u(z,") , and the second deriv-
ative of u with respect to z’ [Refl 2: p. 3751} are

1
2 ——
za'=z—s{-'-’2——1} . (2.23)

1
2 —
u(z,)=z—vot+ s{ -UT - 1} 2 (2.24)

4
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D is a constant defined for conveinence of use Thus u can now be expressed as a Taylor

series about the minimum such that
u=u(z,)) + D(z' - z,')". (2.26)

The limits 2, and z,’ can be written in terms of the minimum value as z,’ = z," + Az’
and z,' = z,' — Az’ where Az’ is the value of 2’ — z,". The diflerence u(z’) — u(z,') = a where
a is the rise time (or width) of the currcnt derivative pulse p,’ (a can be thought of as a
distance by multiplying it by v). [Ref. 2: p. 3751] Therefore

1_‘.
| 2, (2.27)

Using this value, the fact that Au = va, and the assumption that s and R are slowly

varying, Equation 2.19 can be evaluated to give

11




1 14+

By = nﬁz—”vi—lf-z{-;-ﬁ}z. (2.28)
Thus the maximum magnetic field has a dependence upon rise time to the negative
one-half power. Therefore, as the rise time increases, the maximum magnetic field de-
creases. [Ref. 2: p. 3752]

Two points should be emphasized. Equation 2.20 gives the exact maximum magnetic
field amplitude for w evaluated at time ¢, (see Figure 1). Equaticn 2.28 gives an approx-
imation for the maximum magnetic ficld amplitude as a function of the rise time, giving
an opportunity to compare and contrast actual behavior.

12




III. CALCULATIONS AND ANALYSIS

The previous work had identificd the exact solution for the maximum magnetic field
amplitude and an approximation for the maximum as a function of the rise time. Until
this time, no comparison had been conducted between the two to validate the approxi-
mation.

Plots of the magnetic field magnitude versus time were generated from evaluating
Equation 2.20, using tha programs listed in Appendix A. These plots have 200 points
each. The time increment between points was adjusted so that the maximum magnetic
field magnitude occurred at the fortieth point of the plot. The increment could be so
adjusted by knowing that the maximum magnitude would occur at the end of the rise
time a. The variables of interest in the programs were the rise time q, the radiil distance
s, and the axial distance z. Program runs were made for s = 1.0m, 5.0m, and 10.0m; z
= 0.0m, 1.0m, and 5.0m; and a = 10.0ps, 20.0ps, and 30.0ps.

Three general trends were observed from these runs. As g increases with s and z
fixed, the overall magnetic field magnitude decreases. This i due to the g relation in
Equation 2.20. As s increases with a and z fixed, the overall magnetic field magnitude
decreases. This is due to the s-! relation in the arctangent function of Equation 2.20. And
finally, as z increases with a and s {ixed, the overall magnetic field magnitude and shape
were unchanged except that the pulse was delaved in time more and more as z increased.
This is because z is merely a function of time, as seen in Equation 2.10. This time delay
behavior can be seen on the horizontal axes of Figure 6, Figure 7, and Figure 8.

To further investigate B,,,, plots of the maximum magnetic field magnitude versus
the rise times associated with each magnitude were generated. This was accomplished
by the programs listed in Appendix B. The magnetic field as a function cf time was cal-
culated for 200 points by evaluating Equation 2.20, just as did the programs of Appendix
A. This was done for a fixed s and a fixed z (z was chosen to be zero for all following
calculations since it has no effect on the magnitude and simplifies the calculation proc-
ess). The initial rise time was selected to be 10.0ps. The magnetic field magnitudes were
run through a DO loop to identify the maximum. The maximum, along with the corre-
sponding rise time, was stored i an output data file. The rise time was then incremented

by 3.0ps and the entire procedure is repeated three hundred times. The output data file

13




0.06 0.08 0.10 0.12 0.14

CERENKQOV PULSE (GAUSS)

0.04

0.60

B-FIELD VS TIME .

5.0 7l.0 9[.0 11.0_1
TIME (SECONDS) x10™

Figure 6.

B versus ¢ at s = 1.0m, z = 0.0m, and q = 10.0ps
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B-FIELD VS TIME

CERENKOV PULSE (GARUSS)

0.02

0.00

3339.00 34i.00 34:;.00 34%.0[_31
TIME (SECONDS) x10™

Figure 7. B versus ¢ at s = 1.0m, z = 1.0m, and a = 10.0ps
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B-FIELD VS TIME

0.14

: 0.12

0.10

0.08

CERENKOV PULSE (BGARUSS)
0.06

0.04

0.02

0.00

1673.000 1675.000 1677000 1576.093
TIME (SECONDS) %10

Figure 8. B versus ¢ at s = 1.0m, £ = 5.0m, and a = 10.0ps
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of 300 points is piotted by a DISSPLA program incorporated into Appendix B. An ex-
ample plet can be seen in Figure 9.

he theoretical approximation of Equation 2.28 predicts that the relationship be-
tw.en the maximum magnetic field magnitude B,,, and the rise time a should be such
that B, oc @, The best way to examine this beliavior is to apply a log-log scale to the
output data file used to create Figure 9. If the log-log graph produces a linear relation-
ship, the slope of the graph will correspond to the exponent of a. The log-log plot
produces a liaear relationship close to that expected of Equation 2.28 for low and me-
dium rise times, but the slope begins to decrease as the rise time reaches larger values.
This behavior can be seen in Figure 10 and an explanation follows.

The exact solution for the maximum magnetic field magnitude can be calculated by
evaluating Equation 2.20 where the limits z' (Equation 2.21) are for the time 1, (see
Figure 1). Since 1, =1, + a, 2’ becomes a function of a. With z arbitrarily chosen to be
zero, wis becomes Ka/s where K is some constant.

The next step is to examine the arctangent function. For large values of Ka/s, the
arctangent in Equation 2.20 is approximately constant and large changes in a have little
effect on the arctangent value. Therefore the arctangent behaves as if there is no a de-
pendence and B,,, should be proportional to a-! . But the slope of Figure 10 is tending
towards zero for high a .alucs instcad of towards -1, the exact opposite of what one
might think would happen.

There is one main reason why this behavior occurs. It goes back to the two cascs
for the limits of integration of Equation 2.20. The maximum magnetic field amplitude
was calculated for the single integral case where the limits of integration were evaluated
at time 4, (see Figure 2). The magnetic field amplitude of the “tail” of the pulsc was cal-
culated for the double integral case where the limits of integration were evaluated for
times ¢ > 1, (see Figure 5).

Since these calculations arc for the radiative ficlds, the magnitude of the magnetic
field does not decay to zero but instead eventually decays to some constant value. As the
rise time increases for a fixed obscrvation point, the magnitude of the “tail” increases
relative to the maximum magnitude of the pulse. Another way to look at the process is
that large rise time pulses decay slowly compared to short rise time pulses. For extremely
large rise times, the maximum amplitude is virtually indistinguishable from the “tail”.
Note that the maximum amplitude for a short rise time is larger than the maximum rise
time for a long rise time {irom theory, B, o= a™%). Therefore as the rise time increascs,
the maximum magnetic ficld amplitude cannot continue to decrease lincarly because the
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Figure 9. B, versus a at s = 1.0m
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maximum amplitude is approaching a constant value as the rise time increases. This
behavior is shown in Figure 1! and Figure 12,

But as s increases, it decreases the value of Kafs and the arctangent leaves the almost
constant value range and tends towards the linear response value region. As a result, the
relationship between B,,, and a behaves linearly over a larger range of a as s increases.
This behavior can be seen in Figure 13,

The data file used in the plots of Figure 9 and Figure 10 was generated at a fixed s
value of 1.0m. To further investigate this behavior, additional data files needed to be
calculated and plotted for different values of s to see how much of an effect the radial

distance might have on the relationship between B,,, and a . The results are shown in
Table 1.

Table 1. B,, VERSUS a SLOPE VALUES

s = 1.00m slope = -0.112
s = 5.00m slope = -0.207
s = 10.0m slope = -0.273
s = ]5.0m slope = -0.358
s = 20.0m slope = -0.34}]
s = 25.0m slope = -0.368
s = 30.0m slope = -0.409
s = 40.0m slope = -0.425
s = 50.0m slope = -0.452
s = 75.0m slope = -0.467
s = 100.0m slope = -0475

The cancelling of the B,,, oc a*! eflect at high a values by the magnitude of the
m.-.gnetic pulse decay tail is shown in Figure 14. The effect of reducing the argument of
the arctangent function by increasing the radial distance s and thus returning the
arctangent function more to its linear response range is shown in Figure 15.

The relationship between the maximum magnetic fie'” magnitude B,,, and the radial
distance s was graphed. The magnetic field was evaluated using Equation 2.20 and was
plotted as a function of time for 200 points at a constant s and constant a. The maxi-
mum magnetic pulse magnitude is determined and stored with its corresponding s value.
The value of s is incremented and the entire procedure repeated until a 300 point data
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file has been constructed. This data file is then plotted using DISSPLA. The programs
for these actions are located in Appendix C. An example plot can be seen in Figure 16.

The last step is to calculate and plot the three-dimensional relation between time,
the magnetic field, and radial distance. The magnetic field is calculated versus time for
50 points using Equation 2.20. The magnitude and corresponding time and radial posi-
tion are stored in output files. The radial distance is incremented and the entire proce-
dure is repeated 50 times. The result is three output files containing the coordinates for
a 50x50 array. A 3-D graphing routine reads these array points, converts them to a
surface, and plots the surface. The programs for this procedure are listed in Appendix
D.

Due to the fact that DISSPLA will only handle square arrays for surface plotting,
the number of points along the B - axis had to be limited to 50 to hold computer
memory requirements within acceptable limits. This somewhat obscures the detail of the
3-D plot. Therefore a limited 2-D projection of B —r curves for a few s values was cre-
ated in Figure 17 to help understand the workings of Figure 18.

An example plot is displayed in Figurc 18. If the graph projection of the B ~ s plane
is rotated about the 7 axis, a representation of the Cerenkov radiation conc in space is
produced,

Several values were used in the programs listed in the appendices. Electron energy
was set at 30 MeV. It must be approximately 25 MeV or higher in order for Cerenkov
radiation to occur. Current was assumed to be 510 amperes. Any other desired values
can be used for these constants. Except for the purposes of Figure 7 and Figure 8, the
observer axial distance z was sct to zero for simplification of calculations. The observer
radial distance s can never be set to zero except for initialization of incrementation use
in a DO loop. The function u, was set to zero also for simplification. It has the result
of causing the function u, to simplify to the expression u, = — va. where a is the rise time.
Finally, the magnetic field calculations were conducted in MKS units and converted to
CGS units from the relation: 1 Tesla &~ 10,000 Gauss.
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IV,  CONCLUSIONS AND RECOMMENDATIONS

The primary objective was to determine the eflect of varying the rise time of the
electron beam charge density upon the Cerenkov pulse magnitude. The theoretical ap-
proximation of Equation 2.28 predicts that this behavior should be B,,, o< a-%%. Actual
results show that this behavior approaches the theoretical value at large radial distances
due to the decrease of the argument of the arctangent function.

This study was conducted for the case of a semi-infinite path lenght. Evaluating this
behavior for the finite case will have some effect on the expected outcome.

The magnetic field magnitude falls off as the radial distance increases. This was ex-
pected from the relationship in Equation 2.20. Since the magnetic field must also travel
farther as s increases, the pulse is time-delayed relative to a position closer to the
electron beam. By rotating the 3-D graph of Figure 10 about the time axis, an accurate
spatial description of the magnetic field pulse is obtained. This figure is the expected
Cerenkov radiation cone, somewhat analogous to the wake created by a boat moving
faster than the current speed of the water.

The shape and magnitude of the Cerenkov pulse is not affected in any manner by
changes in the obscrver’s axial position. It is only affected by changes in the observer’s
radial position. This assumes that all other possible variables (energy, rise time, current,
etc.) are held constant. The tail of such a pulse decays to some constant value which is
not zero. This effect is becausec the calculations are for the radiative fields. Calculations
should be conducted with the non-radiative fields as well.
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APPENDIX A, CERENKOV PULSE PROGRAM
PROGRAM PULSEI

Piededededeiedeiest Jesededdreddeicdedioio el deledededeiledeieiede foleeldededetedededededeiete i ededededededededede

* THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS *
¥* WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE ¥
* SHAPE OF THE CERENKOV PULSE IS GENERATED. THE VALUES OF THE *
* PULSE MAGNITUDE POINTS FOR THE GIVEN PARAMETERS ARE STORED IN

*
* AN OUTPUT FILE FOR LATER USE IN A PLOTTING ROUTINE. *
R e

REAL N, U1, U2, BETA, CO, ROE, Al, A2, BPRME
REAL RISETM, D, DD, El, E2, 21I, 21F, Z2I, Z2F
REAL Bl, B2, W1, W2, YY, XX, T1, T2, WPI, WPF
REAL ZPMIN, SSQ, BPSQ, TINC, IAMP, ENER, ENERJ
REAL §, Z, C, MO, V, NEG, TPRME, B

INTEGER I

DIMENSION TPRME(200), B(200)

DATA TPRME/200%0.0/, B/200%0,0/

OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT=7,FILE='PULPLT DATA A')

JededededededededededededededededededededededededededededeSedededededededededededededededodedevekedededededodevdodededede o dedede e e

% N IS THE INDEX OF REFRACTION. IAMP IS THE ACCELERATOR CURRENT *
* IN AMPS. ENER IS THE ELECTRON ENERGY IN MEV. RISETM IS THE ¥
PULSE RISETIME IN SECONDS. S IS THE OBSERVER RADIAL DISTANCE IN *
METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *
* PER METER. i
*********************************ﬁ*****************ﬁk**************

E

o,

N = 1.000293

IAMP = 510.0
ENER = 30.0
RISETM = 10.0E-12
5§ =1.0

Z=25.0

CO = 2.99792458E08
MO = 9.109534E-31

C = CO/N

ENERJ = ENER*1,6021892E-13

V = CO*SQRT(1. 0-((MO¥**2, 0)*(CO**4. 0) /(ENERJ**2,0)))
IF (V.LE.C) GO TO 60

BETA = V/CO

ROE = IAMP/V

BPRME = N*BETA

Yedesedererralededertab ek dedsbabdededtseale ek e dedledt ke v dedk e ek e s e sk s e s sk ke e e e et ke e ek e
¥ SETTING Ul ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY ¥
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* CALCULATIONS. ¥*
T L s

Ul
u2

0.0
~V*RISETM

Fededededererrdeimiedeairderiededeirdederederedededederb s ek et b dededabdr e dederbaledtalestde e deabe e e etk

* WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM :

* TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT.
L L e S i

TING = RISETM/40.0

S8Q = §*%2.0

BPSQ = BPRME™¥2.0
D = Z¥BPSQ

DD = 1 - BPSQ

NEG = SSQ*DD

Federededrtredeolefrtiedeerdederlestde sk derededeseab et e st ertdedert bkl stdeatedtertdeaiedk ek

* ZPMIN IS THE 7 VALUE OF THE MINIMUM OF THE U CURVE. *
Ferearakeverbabaledevedert e darabal bk dedeaba ke dedkat bk ab da s a ek ke eak vk vk aealeske s e aeaeake el ek e

ZPMIN = 2 - (S/(SQRT(BPSQ - 1.0)))

Fererbatredededbileserededeit bbbtttk deateale s e et

* T1 AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO *
% THE Ul AND U2 LEVELS RESPECTIVELY. *
Yevedledededededededevededededededededevededeveredevere e dedevedlededededededodede dedededededene dedede devedledededevedodevevedte e dedle

T1
T2

(ZPMIN - U1)/V + (SQRT(SSQ + (Z - ZPMIN)*¥*2,0))/C
T1 + RISETM

DO 40 I = 1,200
IF (I1.EQ.1) THEN

TPRME(I) = T1

B(I) = 0.0
ELSE

TPRME(I) = T1 + (REAL(I)*TINC)
END IF

sededededevedrale e deredeababaedrdedeab e de skl dr desb e ve b deske ek aesk s vedesb s et e kst e sk sk e dereveske e de ek ek

% THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT- *
%

% ION FROM ONE INTERVAL TO TWO INTERVALS.
Sededevedededededevevedededsdededededededededededededevededededodotevedededededeiodededede e dededededededededdededededededededededede

IF (TPRME(I).GT.T2) GO TO 10
Al = Ul + V*TPRME(I)
El = (Z - A1)**2.0

Fesefededededeiedodededfedoeddededodedodefe e e de e dedeo et ek el ek dede et e et e el e e e et

* THIS IF STATEMENT HANDLES THE CASE OF HAVING A NEGATIVE SQUARE ¥

% ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION. *
Fedederevereabaererstdese v s v vereve e dearaedea de s dedk s db st e deale s dea deak e vede v sk s at vetdl e v e ek

IF (E1.LE.ABS(NEG)) THEN
B(I) = 0.0
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20

GO TO
ELSE

0

3
211 = ((A1-D) + SQRT(BPSQ*(E1+NEG)))/DD
END%;F = ((Al-D) - SQRT(BPSQ*(E1+NEG)))/DD

XX = ATAN(W2)
B(I) = ~-ROE*N*(BETA¥¥*2, 0)*(YY-XX)*1, 0E04/U2
GO TG 20

CONTTNUE

Al =" Ul + V¥TPRME(I)

U2 + V*TPRME(I)

(Z ~ A1)**2,0

E2 = (Z - A2)%%2,0

IF (E1.LE.ABS(NEG)) THEN

t=2
=
[ |}

Al1-D) + SQRT(BPSQ¥(E1+NEG)))/DD
Al-D) - SQRT(BPSQ*(E1+NEG)))/DD

SN ]

ot

4
nu
~r~
~~

IF (E2.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

ELSE
221
Z2F

ENDIF

((A2-D) + SQRT(BPSQ*(E2+NEG)))/DD
((A2-D) - SQRT(BPSQ*(E2+NEG)))/DD

nwun

WPI
WPF
Wl
W2
YY
XX
B1

Zz - 211

Z - 221

WPI/S

WPF/S

ATAN(W1)

ATAN(W2)

-ROE*N*(BETA**2, 0)*(YY ~ XX)*1.0E04/U2

WPI
WPF

Z - 22F

Z - Z1F

WPI/S

WEPF/S

ATAN(W1)

ATAN(W2)

B2 = -ROE*N#(BETA*%2,0)#(YY - XX)*1.0E04/U2
B(I) = Bl = B2

= =
N =

lola
Ealia]

Wuuuwn

CONTINUE
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30
40

c
c

1000
50
c

60
1010

70
c

a OO0

8000

Q Qo

CONTINUE
CONTINUE

DO 50 I = 1,200
WRITE(7,1000) TPRME(I),B(I)
FORMAT(G15. 7,G15.7)
CONTINUE

GO TO 70

WRITE(4,1010)

FORMAT(/,'V IS LESS THAN C, THEREFORE THERE IS
$ON FOR THIS ELECTRON',4X,' ENERGY')

CONTINUE

STOP
END

PROGRAM PULPLT

REAL X(300),Y(300),XMIN,XMAX, YMIN, YMAX
INTEGER N
CHARACTER*20 TITLE$

TITLE$ = 'B-FIELD VS TIME$'
N = 200

READ(7,8000) ((X(I),Y(I)),I=1,N)
FORMAT( 2G15. 7)

CALL TEK618

CALL SHERPA('P6 ','BY,3)

CALL PAGE(6,7.5)

CALL AREA2D(4.5,5.5)

CALL XNAME('TIME (SECONDS)$',100)

CALL YNAME('CERENKOV PULSE (GAUSS)$',100)
CALL HEADIN(TITLES$,100,1.5,1)

CALL CROSS

CALL RANGE(X,XMIN,XMAX,N)

CALL RANGE1(Y,YMIN,YMAX,N)

CALL GRAF(XMIN,'SCALE',XMAX,YMIN, 'SCALE',YMAX)
CALL CURVE(X,Y,200,0)

CALL ENDPL(0)

CALL DONEPL

RETURN
END

SUBROUTINE RANGE(Y,YMIN,YMAX,N)

DIMENSION Y(N)
YMIN=1,E20

NO CERENKOV RADIATI



YMAX=-1.E20
DO 10 I=1,N
IF(Y(I).GT. YMAX) YMAX= Y(I)
IF(Y(I).LT. YMIN) YMIN= Y(I)
10 CONTINUE

RETURN
END

SUBROUTINE RANGE1(Y,YMIN,YMAX,N)

DIMENSION Y(N)
YMIN=1.E20
YMAX=-1.E20
DO 20 I=1,N
IF(Y(I).GT. YMAX) YMAX= Y(I)
IF(Y(I).LT. YMIN) YMIN= Y(I)
20 CONTINUE

RETURN
END
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APPENDIX B. B MAX - RISE TIME PROGRAM
PROGRAM CERENKV

dededededereredededededededededodededrdedededededeifeiededoioirlededeedodededededededededede dedededededede de ok dede deveokedede ik ke ke

%*
%
%*
*
*

* *

THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS
WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE
SHAPE OF THE CERENKOV PULSE IS GENERATED. THE MAXIMUM VALUE OF
THE PULSE MAGNITUDE IS DETERMINED AND STORED WITH ITS CORRES~-
PONDIND RISE TIME VALUE. THE RISE TIME IS INCREMENTED AND THE
ENTIRE PROCESS IS REPEATED. THESE VALUES ARE THEN READ TO AN
OUTPUT FILE FOR USE IN A PLOTTING ROUTINE.

* % %k o F %

Yedeledededededededetedededededededededededededeieioicieieicioiedeledededodedodededodededededededededededededededededededederdedededede

REAL N, U1, U2, BETA, CO, ROE, Al, A2, BPRME, YMAX

REAL RISETM, D, DD, E1, E2, Z1I, Z1F, 22I, Z2F

REAL B1, B2, W1, w2, YY, XX, T1, T2, WPI, WPF

REAL ZPMIN, S8Q, BPSQ, TINC, IAMP, ENER, ENERJ

REAL s, Z, C, MO, V, NEG, TPRME, B, DRISE, BMAX

INTEGER I, J

DIMENSION TPRME(200), B(200), DRISE(300), BMAX(300)

DATA TPRME/200%0.0/, B/200*%0.0/, DRISE/300%0.0/, BMAX/300%0.0/

OPEN (UNIT=7,FILE='PULPLT DATA A')
OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT=7,FILE='CPLOT1 DATA A')

Federdedealedededtrtdededababdedninbde el drbdee ke deab b deaab de ek daede e sk e dedabake e de s e e et

ok H R

N IS THE INDEX OF REFRACTION. IAMP IS THE ACCELERATOR CURRENT  *
IN AMPS. ENER IS THE ELECTRON ENERGY IN MEV. RISETM IS THE *
PULSE RISETIME IN SECONDS. § IS THE OBSERVER RADIAL DISTANCE IN *
METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *
PER METER. *

Fededrdevedededbarabvederededevederkde sk ve vt dededt R v deb e vk e deab de e vk e e sl e e vk b deabe e vt e e e e sl et

N = 1.000293
IAMP = 510.0
ENER = 30.0
RISETM = 9.9E-~12
S =10.0

2=0.0

CO = 2.99792458E08

MO = 9.109534E-31

C = CO/N

ENERJ = ENER*1. 6021892E-13

V = CO*SQRT( 1. 0-((MO**2, 0)*(CO™¥*4, 0)/(ENERJ**2.0)))
IF (V.LE.C) GO TO 80

BETA = V/CO

ROE = IAMP/V
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BPRME = N¥BETA

Fededesererrrdediealab e dederese e dedskealese e e dederted vk de e stedte e sk e e dledesed e de e e st e e e e et

* SETTING Ul ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY *
* CALCULATIONS. *
Fedeerirednriniinriabideiniorintidetiekinoiodeiolokerieioedorioidenoekerio ool

Ul =0.0

Feskseredfededab ikt dededed R et e e T et ded b e ere e ekt

* WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM

* TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT. ¥
Fededededredririoideoioiinliotiointinroonkokeinbioinoinieiobioeintioel ot dorinoor

§SQ = §%¥2.0

BPSQ = BPRME#*2.0
D = Z¥BPSQ

DD = 1 - BPSQ

NEG = SSQ*DD

dedeeaededrsedt oo ok ket b ae ek e sk ok e v e e at e sk e ae sk deat ok bk ok e

% ZPMIN IS THE Z VALUE OF THE MINIMUM OF THE U CURVE. W
Feskeeveresevesedrb bbb vt s deabab sk ab b aab ek dese b abe sk v de sl e sk sl vea e e de e e ok deveae e e ook

ZPMIN = Z - (S/(SQRT(BPSQ - 1.0)))

Fesleakrealvesederdedra b vrtdrat b dr s dedk s sab vesk v dedeab ek e e e deat edeale deae ve v b e el el ek oo e e e

* T1 AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO ¥*
* THE Ul AND U2 LEVELS RESPECTIVELY. SINCE T2 AND U2 ARE FUNCT- ¥

* IONS OF RISETM, THEY ARE INSIDE THE DO LOOP. *
Yoo v e vl e e e ek e e b e el ek e b ek e e e e Yk ek e st

T1 = (ZPMIN - U1)/V + (SQRT(SSQ + (Z - ZPMIN)*+*2,0))/C

DO 60 J = 1,300
RISETM = RISETM + 1.0E-13
TINC = RISETM/40.0
DRISE(J) = RISETM
U2 = -V*RISETHM
T2 = T1 + RISETM

DO 40 I = 1,200
IF (I.EQ.1) THEN
TPRME(I) = T1

B(I) = 0.0
ELSE

TPRME(I) = T1 + (REAL(I)*TINC)
END IF

Fedelededeseededede ke deTedededededeteTededede T dedededededededeededededededede e dededededededede e dededo dedededede e de e dede de o de

* THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT~ *
% ION FROM ONE INTERVAL TO TWO INTERVALS. *

Fededederededevedesedr e e iedeoe e e e dedeab vk e e e vt ST e e e e e e e e vede e de e e e s e e e e dede e e ek

IF (TPRME(I).GT.T2) GO TO 10
Al = Ul + V*TPRME(I)
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El = (Z - Al)**2.0

ettt ik doeitodeiolriieiodookdeddeieioai oot
* THIS IF STATEMENT HANDLES THE CASE OF HAVING A NEGATIVE SQUARE *

* ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION.

%

FeRdelrdoieebrint ikl R kb ik rin i deiiike

10

IF (E1.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30
ELSE
(A1-D) + SQRT(BPSQ*(E1+NEG)))/DD
(A1-D) - SQRT(BPSQ*(E1+NEG)))/DD

|50
-
—
nn
NN

Wl = WPI/S

W2 = WPF/S

YY = ATAN(W1)

XX = ATAN(W2)

B(I) = ~-ROE*N*(BETA**2.0)*(YY-XX)*1,0E04/U2
GO TO 20

CONTINUE
Ul + V*TPRME(I)

g
o
i}

A2 = U2 + V*TPRME(I)
El = (2 - A1)*%2,0
E2 = (Z - A2)%*2.0

IF (E1.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

((A1-D) + SQRT(BPSQ*(E1+NEG)))/DD
((A1-D) - SQRT(BPSQ*(E1+NEG)))/DD

IF (E2.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

2-D) + SQRT(BPSQ*(E2+NEG)))/DD
2-D) - SQRT(BPSQ*(E2+NEG)))/DD

[ 1]
NN
NN
> >

ATAN(W2)
~ROE#*N*(BETA**2, 0)*(YY - XX)*1, 0E04/U2

o]
(24
twnnu
4=
(<
ot
2
~
=
[y
v

WPI = 2 - Z2F
WPF = Z - Z1iF
W1l = WPI/S
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W2 = WPF/S

YY = ATAN(W1)

XX = ATAN(W2)

B2 = -ROE*N*{BETA**2, 0)*(YY - XX)*1.0E04/U2
B(I) = Bl + B2

ekt dedededed e it el s s e e e e e de dede b dele ek ok

* THIS LOOP DETERMINES THE MAXIMUM VALUE OF THE CERENKOV PULSE. *
B L

C

20 CONTINUE
C

30 CONTINUE
G

40 CONTINUE
C

YMAX = ~1.0E20

C
C
C
C
C

DO 50 I = 1,200
IF (B(I).GT.YMAX) YMAX = B(I)
50 CONTINUE

BMAX(J) = YMAX
60 CONTINUE

DO 70 I = 1,300
WRITE(7,1000) DRISE(I),BMAX(I)
1000  FORMAT(G15.7,G15.7)
70 CONTINUE
c
GO TO 90
80 WRITE(4,1010)
1010 FORMAT(/,'V IS LESS THAN C, THEREFORE THERE IS NO CERENKOV RADIATI
$ON FOR THIS ELECTRON',4X,' ENERGY')
90 CONTINUE

c
STOP
END
c
c
C
PROGRAM CPLOT1
o PROGRAM LOGPLT
c
REAL X(300),Y(300),XMIN,XMAX, YMIN, YMAX
o DOUBLE PRECISION X(300),Y(300),XMIN,XMAX,YMIN, YMAX
INTEGER N
CHARACTER*20 TITLES
c
TITLE$ = 'B MAX VS RISETIMES'
N = 300
C

READ(7,8000) ((X(I),Y¥(I)),I=1,N)
8000 FORMAT(2G15.7)

c CALL TEK618
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CALL SHERPA('P7 ','8',3)

CALL SHERPA('PS8 ','B',3)

CALL PAGE(6,7.5)

CALL AREA2D(4.5,5.5)

CALL XNAME( 'RISE TIME (SECONDS)$',100)
CALL YNAME( 'CERENKOV PULSE (GAUSS)$',100)
CALL HEADIN(TITLES$,100,1.5,1)

CALL CROSS

CALL RANGE(X,XMIN,XMAX,N)

CALL RANGE1(Y,YMIN,YMAX,N)

CALL GRAF(XMIN, 'SCALE',6XMAX,YMIN, 'SCALE',YMAX)
CALL LOGLOG(XMIN,4.5,YMIN,5.5)

CALL CURVE(X,Y,300,0)

CALL ENDPL(0)

CALL DONEPL

RETURN |,
END '

SUBROUTINE RANGE(Y,YMIN,YMAX,N)

DIMENSION Y(N)
YMIN=1.E20
YMAX=~1.E20
DO 10 I=1,N
IF(Y(I).GT. YMAX) YMAX= Y(I)
IF(Y(I).LT. YMIN) YMIN= Y(I)
CONTINUE

RETURN
END

SUBROUTINE RANGE1(Y,YMIN,YMAX,N)

DIMENSION Y(N)
YMIN=1.E20
YMAX=-1,E20
DO 20 I=1,N
IF(Y(I).GT. YMAX) YMAX= Y(I)
IF(Y(I).LT. YMIN) YMIN= Y(I)
CONTINUE

RETURN
END
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APPENDIX C. B MAX -S PROGRAM
PROGRAM BVS

dedededrieictclededededeiedvietdeieivicdekdeieiedededoicieleiadelcicicinfiolviciedvicdolodoledeioieiidededededoli ke deiedeke

* THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS *
WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE *
SHAPE OF THE CERENKOV PULSE IS GENERATED. THE MAXIMUM OF THE *
PULSE MAGNITUDE IS DETERMINED AND STORED WITH ITS CORRESPONDING *
S VALUE. THE S VALUE IS THEN INCREMENTED AND THE ENTIRE PROCESS *
IS REPEATED. THESE VALUES ARE READ TO AN OUTPUT FILE FOR LATER *

USE IN A PLOTTING ROUTINE. *
B e e e S L T T L T S

%k % %

REAL N, U1, U2, BETA, CO, ROE, Al, A2, BPRME, YMAX

REAL RISETM, D, DD, El1, E2, 21I, Z1F, 221, Z2F

REAL B1, B2, W1, W2, YY, XX, Ti, T2, WPI, WPF

REAL ZPMIN, 8SQ, BPSQ, TINC, IAMP, ENER, ENERJ

REAL 8, Z, C, MO, V, NEG, TPRME, B, DS, BMAX

INTEGER I, J

DIMENSION TPRME(200), B(200), DS(300), BMAX(300)

DATA TPRME/200%0.0/, B/200%0.0/, DS/300*0.0/, BMAX/300%0.0/

OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT=7,FILE='BVSPLT DATA A')

Sedevededededededededevededivededeedevodedesededede e dedededededededededeiededodededededededededededededededededodededededededededede

N IS THE INDEX OF REFRACTION. IAMP IS THE ACCELERATOR CURRENT ¥
IN AMPS. ENER 1S THE ELECTRON ENERGY IN MEV. RISETM IS THE v
PULSE RISETIME IN SECONDS. S IS THE OBSERVER RADIAL DISTANCE IN *
METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *

PER METER. %
ededledededededededededodedesederedevededededevededededededevedededededededeve dedeviodedede e e vt dedededeve e deveste e dedeevestedede

E R

N = 1,000293

IAMP = 510.0
ENER = 30.0
RISETM = 10.0E-12
0
0

[S R 2]

0.
0.
2.99792458E08

9. 109534E-31

= CO/N

NERJ = ENER*1, 6021892E-13

= CO*SQRT(1. 0~((MO**2, 0)*(CO**4, 0)/(ENERI**2.0)))
IF (V.LE.C) GO TO 80

BETA = V/CO

ROE = IAMP/V

BPRME = N*BETA

co
MO
c
E
\%
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* SETTING Ul ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY *
* CALCULATIONS. *
e e

Ul
U2

0.0
-V*RISETM

Fedededededededderededeiedededniedrdedeiedeiedededededededededede stk de e deatede b alesieab ke dederleste e e e dedteab e e ke

* WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM *

#* TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT.
***********************************u*******************************

TINC = RISETM/40.0
BPSQ = BPRME**2,0
D = Z*BPSQ

DD = 1 - BPSQ

DO 60 J = 1,300
8 = 0 01
DS(J 5
88Q
NEG

"II&'M

+
§#2. 0
8SQ*DD

Sededefesededededevaldeiireinbintieiirivelllnbietseiinieldrdeie kb e dedede st deste stk

* ZPMIN IS THE Z VALUE OF THE MINIMUM OF THE U CURVE. %*
************************************************************#******

ZPMIN = 2 - (S/(SQRT(BPSQ - 1.0)))

devevealaraledbdbakabe ek dert e seabdesk e vederalarl sl sk e vkl derk e sl v e v e v e e b e s et e ek e etk

% T1 AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO ¥

* THE Ul AND U2 LEVELS RESPECTIVELY. *
Sededlededevededededeodedededededededeededededededavedededevededededefedededededesededededededededededededevededededetede dede de e ke s

T1
T2

(ZPMIN - U1)/V + (SQRT(SSQ + (Z - ZPMIN)**2.0))/C
T1 + RISETM

DO 40 I = 1,200
IF (I.EQ. 1) THEN

TPRME(I) = TI

B(I) = 0.0
ELSE

TPRME(I) = T1 + (REAL(I)*TINC)
END IF

Fedededededededefefdnblniirrdedededederedertitdedededededeede e e dede e dbdededededtede el bbb de e ek oo

% THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT- *

* ION FROM ONE INTERVAL TO TWO INTERVALS. %
desdededededededededededeiededededededeiedededeieicdededsteddededeiededededoledededededededeiedodede dededededededededededede dedevedede

IF (TPRME(I).GT.T2) GO TO 10
Al = Ul + V*TPRME(I)
El = (Z - Al)*%2.0

dededodedeedededededodedededededededdededededeTedeSodedededededededoiedodedeiedededededededededodelediiededede o de dedededdedededede
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* THIS IF STATEMENT HANDLES THE CASE OF HAVING A NEGATIVE SQUARE *

C

C * ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION. *
C St s L i e s e e e e e L e i S e e R s e
C

IF (E1.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

(A1-D) + SQRT(BPSQ*(E1+NEG)))/DD
(A1-D) - SQRT(BPSQ*(E1+NEG)))/DD

WPI
WPF
W1l = WPI/S

W2 = WPF/S

YY = ATAN(W1)

XX = ATAN(W2)

B(I) = ~ROE*N*(BETA**¥2, 0)*(YY-XX)*1.0E04/U2
GO TO 20

nn
o~
L]
[o ]
—
—

10 CONTINUE
Al = Ul + V*TPRME(I)

A2 = U2 + V*TPRME(I)

El = (2 - A1)"**2.0

E2 = (Z - A2)%*2.0

IF (E1.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

ELSE
Z11
Z1F

ENDIF

((Al1-D) + SQRT(BPSQ*(E1+NEG)))/DD
((A1-D) - SQRT(BPSQ*(E1+NEG)))/DD

IF (E2.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30

ELSE
z221
Z2F

ENDIF

((A2-D) + SQRT(BPSQ*(E2+NEG)))/DD
((A2-D) - SQRT(BPSQ*(E2+NEG)))/DD

WPI
WPF
W1
W2

Z - 211

z - 721

WPI/S

WPF/S

ATAN(W1)

ATAN(W2)

-ROE#*N%( BETA*%2, 0)*(YY - XX)*1.0E04/U2

i

3
nmwuun

2 - 22F
Z - Z1F
WPI/S
WPF/S
ATAN(W1)
ATAN(W2)

=,

o

1
nu

e
<
nnun
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B2 = -ROE*N*(BETA**2, 0)*(YY - XX)¥1, 0E04/U2
B(I) = Bl + B2

c
20 CONTINUE
c
30 CONTINUE
¢
40  CONTINUE
c
YMAX = -1.0E20
DO 50 I = 1,200
IF (B(I).GT.YMAX) YMAX = B(I)
50  CONTINUE
BMAX(J) = YMAX
60 CONTINUE
c

DO 70 I = 1,300
WRITE(7,1000) DS(I),BMAX(I)
1000 FORMAT(G15.7,G15.7)
70 CONTINUE
c

GO TO 90

80 WRITE(4,1010)

1010 FORMAT(/,'V IS LESS THAN C, THEREFORE THERE IS NO CERENKOV RADIATI

$ON FOR THIS ELECTRON',4X,' ENERGY')

90 CONTINUE

c

STOP
END

PROGRAM BVSPLT

REAL X(300),Y(300),XMIN,XMAX,YMIN, YMAX

DOUBLE PRECISION X(300),Y(300),XMIN,XMAX,YMIN,YMAX
INTEGER N

CHARACTER*25 TITLES$

(@] Q aan

TITLE$ = 'B MAX VS RADIAL DISTANCES'
N = 300

READ(7,8000) ((X(I),Y(I)),I=1,N)
8000 FORMAT(2G15.7)

c CALL TEK618
CALL SHERPA('P9 ','B',3)
CALL PAGE(6,7.5)
CALL AREA2D(4.5,5.5)
CALL XNAME( 'RADIAL DISTANCE (METERS)$',100)
CALL YNAME('CERENKOV PULSE (GAUSS)$',100)
CALL YEADIN(TITLES,100,1.5,1)
CALL CROSS
CALL RANGE(X,XMIN,XMAX,N)
CALL RANGE1(Y,YMIN,YMAX,N)
CALL GRAF(XMIN, 'SCALE',XMAX,YMIN, 'SCALE',YMAX)
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CALL CURVE(X,Y,300,0)
CALL ENDPL(O)
CALL DONEPL

RETURN
END

SUBROUTINE RANGE(Y,YMIN,YMAX,N)

DIMENSION Y(N)
YMIN=1.E20
YMAX=-1.E20
DO 10 I=1,N
IF(Y(I).GT. YMAX) YMAX= Y(I)
IF(Y(I).LT. YMIN) YMIN= ¥(I)
CONTINUE

RETURN
END

SUBROUTINE RANGE1(Y,YMIN,YMAX,N)

DIMENSION Y(N)
YMIN=1.E20
YMAX=~1,E20
DO 20 I=1,N
IF(Y(I).GT. YMAX) YMAX= Y(I)
IF(Y(I).LT. YMIN) YMIN= Y(I)
CONTINUE

RETURN
END
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APPENDIX D. S-T-BPROGRAM
PROGRAM STB

Fededederevednledededededededededederidededriedededededededededevededededederedodedededededededededeke dedederiededede e de dedtedeotededede

* THIS PROGRAM IS LOCATED ON THE NPS MAIN FRAME COMPUTER AND IS *
* WRITTEN USING WATFOR 77. AFTER ENTERING CERTAIN PARAMETERS, THE *
* SHAPE OF THE CERENKOV PULSE IS GENERATED. THE S VALUE IS INCRE- *

* MENTED AND THE PROCESS IS REPEATED. THESE VALUES ARE STORED FOR *

* LATER USE IN A 3-D PLOTTING ROUTINE.
*******************************************************************

REAL N, U1, U2, BETA, CO, ROE, Al, A2, BPRME
REAL RISETM, D, DD, E1, E2, 21I, Z1F, 22I, 22F
REAL B1, B2, W1, W2, YY, XX, T1, T2, WPI, WPF
REAL ZPMIN, SSQ, BPSQ, TINC, IAMP, ENER, ENERJ
REAL S, 2, C, MO, V, NEG, TPRME, B

REAL BF, SRD, TIME

INTEGER I, J, K, L, M

DIMENSION TPRME(200), B(200)

DIMENSION BF(2500), SRD(2500), TIME(2500)

DATA TPRME/200%0,0/, B/200%0.0/, M/2500/

DATA BF/2500%0,0/, SRD/2500%0,0/, TIME/2500%0. 0/

OPEN (UNIT=4,FILE='TERMINAL')
OPEN (UNIT=7,FILE='S DATA B')
OPEN (UNIT=8,FILE='T DATA B' )
OPEN (UNIT=9,FILE='B DATA B')

dedededeserdeiriedeeinnbeedeledededededededeiedabadededtereaaien sodedede b dededededededededddedddededbdr bt ekt

N IS THE INDEX OF REFRACTION. IAMP IS THE ACCELERATOR CURRENT *
IN AMPS. ENER IS THE £LECTRON ENERGY IN MEV. RISETM IS THE *
PULSE RISETIME IN SECOWDS. S IS THE OBSERVER RADIAL DISTANCE IN *
METERS. Z IS THE OBSERVER AXIAL DISTANCE IN METERS. CO IS THE *
VACUUM SPEED OF LIGHT IN METERS PER SECONDS. MO IS THE ELECTRON *
MASS IN KILOGRAMS. ROE IS THE LINEAR CHARGE DENSITY IN COULOMBS *

PER METER,
**V****c**f**w**********w****u*******************************u*****

% X ¥k d

N = 1.000293

IAMP = 510.0
ENER = 30.0
RISETM = 10.0E-12
$=0.0

Z=0.0

co
MO

2.99792458E08
9. 109534E-31
= CO/N
ENERJ = ENER*1.6021892E~13
V = CO*SQRT(1. 0-((MO**2, 0)*(CO**4, 0)/(ENERJ**2.0)))
IF (V.LE.C) GO TO 90
BETA = V/CO
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ROE = IAMP/V
BPRME = N*BETA

kbt debiat itttk de i deinie o vededededesertr e e skeatealdb e aleaedeabdedededab ok

* SETTING Ul ARBITRARILY TO ZERO FIXES U2. THIS IS TO SIMPLIFY *
* CALCULATIONS. *
B R L e e e T

Ul =0.0
U2 = ~V*RISETM

ederkrtdedrnrtrednbitrededekaie Rt ekt dekdede el bl dedbatab ek dedeebe et

* WITH 200 POINTS, TINC WAS SELECTED SO AS FOR THE PULSE MAXIMUM *
&

% TO OCCUR AT APPROXIMATELY 20% OF THE GRAPH LENGHT.
Yook et dr bbb kv ke e vk sk b e st e drab ek v stk o et e v bbb

TINC = RISETM/10.0
BPSQ = BPRME*¥2.0
D = Z*BPSQ

DD =1 - BPSQ

DO 50 K = 1,50
IF (K.EQ.1) THEN
=0

J
ELSE
J = 50%(K-1)
END IF
S=8S+0.5
SSQ = §%%2.0
NEG = SSQ*DD
Yesesledevedesiededeveniedevedlevediedeve dedededeverlede e dededeYe e dededevie e dedevedevedesede dededlevede devedledevledodedledleve de e e
% ZPMIN IS THE Z VALUE OF THE MINIMUM OF THE U CURVE. %
Sedeviededededededeledadededevedosedetdededededededode e e dededededededede dede e dedededede e dededededededededeedededededededede de

ZPMIN = 2 - (S/(SQRT(BPSQ - 1.0)))

Yedededevedlededesededededededededede e devedeedede e e dede e dededededelede e dededededede e dededfedede deededlede dededede e veededeteke
% T1 AND T2 ARE THE TIMES THAT THE U CURVE MINIMUM IS TANGENT TO
* THE Ul AND U2 LEVELS RESPECTIVELY. *

Fededederede ek ey e e oY e e bk Tk v etk e sk ve sk et e de sk ale sk okl

ZPMIN - U1)/V + (SQRT(SSQ + (Z ~ ZPMIN)¥**2.0))/C
1 + RISETM

-]

1

DO 40 I = 1,50

IF (I.EQ.1) THEN
TPRME(I) = T1
B(I) = O.

ELSE
TPRME(I)

END IF

L=J+1

SRX(L) = §

TIME(L) = TPRME(I)

o

T1 + (REAL(I)*TINC)
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% THIS IF STATEMENT HANDLES THE CHANGEOVER IN LIMITS OF INTEGRAT- :

* ION FROM ONE INTERVAL TO TWO INTERVALS.
T e L S St s

IF (TPRME(I).GT.T2) GO TO 10
Al = Ul + V*TPRME(I)
El = (Z - A1)¥%2.0

Fevededededederdedeaededededeatderededrdelr il e dederbalestat e dedtededtal sk e sk e deat bl deaedestkedeale

* THIS IF STATEMENT HANDLES THE CASE OF HAVING A NEGATIVE SQUARE *

* ROOT IN REAL SPACE WHEN DETERMINING THE LIMITS OF INTEGRATION. *
Fedeseaiiebed fokviriiniiinioiokinbioiioiniobrininiokeriorionioeinenoiooodek

IF (E1.LE.ABS(NEG)) THEN

B(I) = 0.0
GO TO 30
ELSE

Z1I = ((A1-D) + SQRT(BPSQ*(E1+NEG)))/DD
Z1F = ((Al1-D) - SQRT(BPSQ*(E1+NEG)))/DD
ENDIF

WPI = 4 - 211

WPF = Z -~ Z1F

W1l = WPI/S

W2 = WPF/S

YY = ATAN(W1)

XX = ATAN(WZ)

B(I) = -ROE*N*(BETA**2,0)*(YY-XX)*1.0E04/U2
GO TO 20

10 CONTINUE

Al = Ul + V*TPRME(I)

A2 = U2 + V*TPRME(I)

El = (Z ~ Al1)**2.0

E2 = (Z - A2)**2.0

IF (E1.LE.ABS(NEG)) THEN
B(I) = 0.0

1-D) + SQRT(BPSQ*(E1+NEG)))/DD
1-D) - SQRT(BPSQ*(E1+NEG)))/DD

[ ]
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IF (E2.LE.ABS(NEG)) THEN
B(I) = 0.0
GO TO 30
ELSE
Z221 = ((A2-D) + SQRT(BPSQ*(E2+NEG)))/DD
Z2F = ((A2-D) - SQRT(BPSQ*(E2+NEG)))/DD
ENDIF

WPI = 2 - 211 ,
WPF = 2 - 221

W1 = WPI/S

W2 = WPF/S
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YY = ATAN(W1)

XX = ATAN(W2)

Bl = =ROE*N*(BETA*¥2, 0)*(YY - XX)*1.0E04/U2
WPI = Z - Z2F

WPF = Z - Z1F

W1 = WPI/S

W2 = WPF/S

YY = ATAN(W1)

XX = ATAN(W2)

B2 = =ROE*N*( BETA**2, 0)%*(YY = XX)*1.0E04/U2
B(I) = Bl + B2

CONTINUE
CONTINUE

BF(L) = B(I)
CONTINUE

CONTINUE

DO 60 I = 1,M
WRITE(7,1000) SRD(I)
FORMAT(G15.7)

CONTINUE

DO 70 I=1,M t
WRITE(S,1000) TIME(I)
CONTINUE

DO 80 I = 1,M
WRITE(9,1000) BF(I)
CONTINUE

GO TO 100
WRITE(4,1010)
FORMAT(/,'V IS LESS THAN C, THEREFORE THERE IS NO CERENKOV RADIATI

$ON FOR THIS ELECTRON',4X,' ENERGY')

CONTINUE

STOP
END

PROGRAM THREED

REAL §(2500),T(2500),B(2500),X3MAX,Y3MAX, Z3MAX, ZMAT(2500)
INTEGER I,N
CHARACTER*35 TITLE$

TITLES = 'B-FIELD VS TIME VS RADIAL DISTANCES'
N = 2500

READ(7,8000) (S(I),I=1,N)
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8000 FORMAT(G15.7)
READ(8,8000) (T(I),I=1,N)
READ(9,8000) (B(I),I=1,N)

CALL RANGE(S,X3MAX,N)
CALL RANGE(T,Y3MAX,N)
CALL RANGE(B,Z3MAX,N)

c CALL TEK618
CALL SHERPA('P10 ','B',3)
CALL PAGE(7.5,9.0)
CALL AREA2D(5.5,7.0)
CALL VOIM3D(1,1,1)
CALL X3NAME('DISTANCE (METERS)$',100)
CALL Y3NAME('TIME (SECONDS)$',100)
CALL Z3NAME( 'MAGNITUDE (GAUSS)$',100)
CALL HEADIN(TITLE$,100,1.0,1)
CALL VUABS(1.0,-0.5,0.5)
CALL GRAF3D(0.0,'SCALE',X3MAX,0.0,'SCALE',Y3MAX,0.0, 'SCALE',23MAX)
CALL BGNMAT(50,50)
CALL GETMAT(S,T,B,2500,0)
CALL ENDMAT(ZMAT,0)
CALL SURMAT(ZMAT,1,50,5,50,0)
CALL ENDPL(O)
~ALL DONEPL

STOP
END

SUBROUTINE RANGE(Y,YMAX,N)

(9] aaon

DIMENSION Y(N)
YMAX = -1.0E20
DO 20 I = 1,N
IF (Y(I).GT.YMAX) YMAX = Y(I)
20 CONTINUE

RETURN
END

50



)

LIST OF REFERENCES

Jelley, J. V., Cerenkov Radiation and Its Applications, Pergamon Press, 1958.

Buskirk, Fred R., and Neighbours, John R., Time Development of Cerenkov Radi-
ation, Physical Review A, v. 31, Number 6, June 1985.

Lyman, Kathleen M., Cerenkov Radiation: Time Dependent B Field over a Finite

Path, Master’s Thesis, Naval Postgraduate School, Monterey, California, June
1986.

Price, Byron K., Cerenkov Radiation Field Analysis due to a Passing Electron Beam,
Master’s Thesis, Naval Postgraduate School, Monterey, California, Jine 1987.

51




INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304.6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor J.R. Neighbours, Code 61Nb 2
Department of Physics
Naval Postgraduate School
Monterey, CA 93943-5000

d.  Professor K.E. Woehler, Code 61Wh 2
Department of Physics
Naval Postgraduate School
Monterey, CA 93943-5000

5. LT Mark J. Hellstern, USN 2
Student Mail Center Box 1789
Naval Postgraduate School
Monterey, CA 93943-5000

6. LT Billie S. Walden, USN 2
Student Mail Center Box 3009
Naval Postgraduate School
Monterey, CA 93943-5000

7. LT Perry M. Suttlc, USN 2
Department Head Class 115
Surface Warfare Officers School Command
Newport, R1 02841-5012




